Memory Alpha
Advertisement
Memory Alpha

Comparison to megatons, precision

Present-day descriptions of explosive energy is usually given in tons of TNT, not just "tons" (kilotons, megatons). We don't know if the 24th-century "isoton" is similarly-defined (though it would make sense if it is simultaneously used as a unit of weight, as suggested by the article), but if we're going to compare it to a present-day megaton, we should probably qualify it.

In addition, the conversion rate of 2.5764 megatons per isoton has too many significant digits. While we have a fairly precise idea how much energy a perfect matter/antimatter reaction would create, all we know about standard photon torpedoes is a maximum yield of "25" isotons. With only two significant digits to work with, our conversion should be represented as 2.6 megatons per isoton (megatons TNT per isoton).

Finally, while I applaud the original author for working all of this out, this information might be better suited as background information. The Technical Manual does seem to give us the information we need to calculate this, but its use in canon sources was probably made without this information in mind and could generate some misleading interpretations. The invention of the isoton was certainly intended to allow writers to come up with values without having to tie them to real-world units. --Fastolfe

Actually it was background information, hence the italics. Nevertheless, I've clarified what was otherwise supposed to be "understood" as "background". --Alan del Beccio 02:40, 13 October 2006 (UTC)
The conversion rate appears in non-italicized prose in the first paragraph. --Fastolfe 02:42, 13 October 2006 (UTC)
It should not be there. I am moving it to background. --OuroborosCobra talk Klingon Empire logo 02:45, 13 October 2006 (UTC)
This is my first responce to a topic, please let me know if I am doing it right, I just ask you to be polite.
Understanding the amount of power being used is key throughout all of the Star Trek series and the author of the Photon Torpedo has not done the homework. In many places metric prefixes are used in conbination with a commonly known words associated with energy. Worf said in the episode with the "Dowd" that they were being hit with "400 gigawatts of partical energy!" and that it had collapsed the ship's shields. Obviously very important and is pretty specific information. The prefix ISO is taken from Greek meaning"like" or "similar". Given this, the author has totally changed its meaning, I believe just because it sounds good as techno-speak. Next, assuming that it is a metric prefix, as most, if not all units are given in Star Trek, it would come after Mega, Giga, Tera, Peta, Exa, Zetta, and the largest I could find was Yotta,(source: US Metric Association) which minimally would give us a yield of 2.57 X 10 to the 27th power, tons of explosive equivolent using the afore mentioned TNT model. As anyone who has studied modern warfare could tell you, there are weapons of the 2.6 megaton x 25 (65 megaton equivolent) magnitude thermo-nuclear devices already deployed and ready for launch now. That would make the only difference between what we already have, and what is being used in a "missile" 200+ years from now, the speed at which the weapon is delivered. But using the metric model that I mentioned earlier, which is actually somewhat more realistic given we can get over 100 megatons from a Plutonium fusion reaction vs a Matter/Anti-Matter (I think I read somewhere that the torpedo had 1.5 lbs. of each component, that could be wrong though) complete annihlation process. A tremendous difference in the amount of energy being released. This would give a Photon Torpedo enough power to kill a planet, and possibly a Gas Giant, maybe even a star. Realistically, we have no idea how much power is contained in a 2.57 X 10 to the 27th power blast or what it could do (there are probably some physicist who could figure out how much territory it would destroy.) However, if it was only half of that, 2,570,000,000,000,000 (rounding down by one zero) Tons of TNT equivolent, there is no ship, even plated with "Insanium" that could take that kind of hit. Just the concusive force hitting (not penetrating) the vessel would smash the people against the bulkheads hard enough to kill them. So to my point: the theory that a Photon Torpedo has a yield of 25 Isotons (65 megaton equivolent) or that it is the next notch up the metric chain are both practically un-usable and a real definition of how much energy is generated should be established based on an equal weight of matter/antimatter, like one gram or a kilogram. (information only: it only takes 7 grams of Plutonium to make a fusion thermo-nuclear device. For a comparison I recommend going to this website: www.nawcwpns.navy.mil/clmf/faeseq.html, and you will see what 2000lbs (1 ton) of gasoline can do.) This would not only fill in the Photon Torpedo question, but it would also start working on the problem of how much power is being generated in the Warp-Core, and how much power the entire ship uses/has at its disposal and what might happen if they had to jettison the Core. In the episode where the Enterprisee was transporting two shapeshifting creatures, it was noted that the transmitter on one of the planets was generating a "Terawatt" of power that was needed to get through the atmosphere. I believe Ryker said, "that is more than our entire energy output." or something to that effect. That kind of gives and upper limit to the Warp-Core potential, and since it is matter/anti-matter, another piece to the power problems.

-Shaggrat-

Advertisement